We use surface tension-based passive pumping and fluidic resistance to create a number of microfluidic analogs to electronic circuit components. Three classes of components are demonstrated: (1) OR/AND, NOR/NAND, and XNOR digital microfluidic logic gates; (2) programmable, autonomous timers; and (3) slow, perfusive flow rheostats. The components can be implemented with standard pipettes and provide a means of non-electronic and autonomous preprogrammed control with potential utility in cell studies and high throughput screening applications.