Dominance of Geobacteraceae in BTX-degrading enrichments from an iron-reducing aquifer

FEMS Microbiol Ecol. 2007 Oct;62(1):118-30. doi: 10.1111/j.1574-6941.2007.00371.x. Epub 2007 Sep 3.

Abstract

Microbial community structure was linked to degradation potential in benzene-, toluene- or xylene- (BTX) degrading, iron-reducing enrichments derived from an iron-reducing aquifer polluted with landfill leachate. Enrichments were characterized using 16S rRNA gene-based analysis, targeting of the benzylsuccinate synthase-encoding bssA gene and phospholipid fatty acid (PLFA) profiling in combination with tracking of labelled substrate. 16S rRNA gene analysis indicated the dominance of Geobacteraceae, and one phylotype in particular, in all enrichments inoculated with polluted aquifer material. Upon cultivation, progressively higher degradation rates with a concomitant decrease in species richness occurred in all primary incubations and successive enrichments. Yet, the same Geobacteraceae phylotype remained common and dominant, indicating its involvement in BTX degradation. However, the bssA gene sequences in BTX degrading enrichments differed considerably from those of Geobacter isolates, suggesting that the first steps of toluene, but also benzene and xylene oxidation, are carried out by another member of the enrichments. Therefore, BTX would be synthrophically degraded by a bacterial consortium in which Geobacteraceae utilized intermediate metabolites. PLFA analysis in combination with (13)C-toluene indicated that the enriched Geobacteraceae were assimilating carbon originally present in toluene. Combined with previous studies, this research suggests that Geobacteraceae play a key role in the natural attenuation of each BTX compound in situ.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / chemistry
  • Bacteria / classification
  • Bacteria / genetics
  • Bacteria / isolation & purification
  • Benzene / metabolism*
  • Biodegradation, Environmental
  • Biodiversity*
  • Carbon Isotopes / metabolism
  • Carbon-Carbon Lyases / genetics
  • DNA, Bacterial / chemistry
  • DNA, Bacterial / genetics
  • DNA, Ribosomal / chemistry
  • DNA, Ribosomal / genetics
  • Deltaproteobacteria / chemistry
  • Deltaproteobacteria / classification
  • Deltaproteobacteria / genetics
  • Deltaproteobacteria / isolation & purification*
  • Fatty Acids / analysis
  • Iron / metabolism*
  • Isotope Labeling
  • Molecular Sequence Data
  • Oxidation-Reduction
  • Phospholipids / analysis
  • RNA, Ribosomal, 16S / genetics
  • Toluene / metabolism*
  • Water Microbiology*
  • Water Pollutants, Chemical / chemistry
  • Water Pollutants, Chemical / metabolism
  • Xylenes / metabolism*

Substances

  • Carbon Isotopes
  • DNA, Bacterial
  • DNA, Ribosomal
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Water Pollutants, Chemical
  • Xylenes
  • Toluene
  • Iron
  • Carbon-Carbon Lyases
  • benzylsuccinate synthase
  • Benzene

Associated data

  • GENBANK/EF190465
  • GENBANK/EF190466