Defects in apoptosis signaling contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL), and overexpression of antiapoptotic Bcl-2 (Bcl-2 and Bcl-X(L)) family proteins has been observed in ALL. ABT-737 is a small-molecule BH3-mimetic that inhibits the antiapoptotic Bcl-2 family proteins. We evaluated the cytotoxicity of ABT-737 in combination with vincristine, dexamethasone, and L-asparaginase (VXL) in 7 ALL cell lines. Multilog synergistic cytotoxicity was observed in all 7 cell lines with ABT-737 plus L-asparaginase or vincristine, and in 5 of 7 cell lines with ABT-737 plus dexamethasone or VXL. In leukemia cells, but not in normal lymphocytes, ABT-737 plus L-asparaginase induced greater mitochondrial depolarization (JC-1 staining); mitochondrial cytochrome c release; activation of Bax, Bid, and caspases (immunoblotting); and eventually apoptosis (annexin V staining) than did either drug alone. In mouse xenografts derived from patients with ALL at diagnosis (ALL-7) or at relapse (ALL-19), event-free survival (EFS) was significantly enhanced with ABT-737 plus VXL relative to VXL or ABT-737 alone (P </= .02). Thus, ABT-737 synergistically enhanced VXL cytotoxicity in ALL cell lines via a mitochondrial death pathway and enhanced EFS in VXL-treated mice bearing ALL xenografts. Combining VXL with a BH3-mimetic warrants clinical investigation in ALL at relapse and potentially in chemotherapy-resistant ALL subgroups.