In this manuscript, basic principles of functional magnetic resonance imaging (fMRI) are reviewed. In the first section, two intrinsic mechanisms of magnetic resonance image contrast related to the longitudinal and transverse components of relaxing spins and their relaxation rates, T(1) and T(2), are described. In the second section, the biophysical mechanisms that alter the apparent transverse relaxation time, T(2*), in blood oxygenation level dependent (BOLD) studies and the creation of BOLD activation maps are discussed. The physiological complexity of the BOLD signal is emphasized. In the third section, arterial spin labeling (ASL) measures of cerebral blood flow are presented. Arterial spin labeling inverts or saturates the magnetization of flowing spins to measure the rate of delivery of blood to capillaries. In the fourth section, calibrated fMRI, which uses BOLD and ASL to infer alterations of oxygen utilization during behavioral activation, is reviewed. The discussion concludes with challenges confronting studies of individual cases.