The analgesic properties of cannabinoid receptor agonists are well characterized. However, numerous side effects limit the therapeutic potential of these agents. Here we report a synergistic antinociceptive interaction between the endogenous cannabinoid receptor agonist anandamide and the synthetic peroxisome proliferator-activated receptor-alpha (PPAR-alpha) agonist 2-(4-(2-(1-Cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid (GW7647) in a model of acute chemical-induced pain. Moreover, we show that anandamide synergistically interacts with the large-conductance potassium channel (KCa1.1, BK) activator isopimaric acid. These findings reveal a synergistic interaction between the endocannabinoid and PPAR-alpha systems that might be exploited clinically and identify a new pharmacological effect of the BK channel activator isopimaric acid.