4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone is a potent and abundant procarcinogen found in tobacco smoke, and glucuronidation of its major metabolite, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNAL), by UDP-glucuronosyltransferases (UGT) including UGT2B17 is an important mechanism for 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone detoxification. Both copies of the UGT2B17 gene are deleted in approximately 10% of Whites and the deletion is associated with a reduction in NNAL glucuronidation activity in vitro. In this study, we examined the effects of the UGT2B17 deletion (0/0) on NNAL glucuronidation rates in a sample of 82 healthy cigarette smokers and further examined its effects on lung cancer risk in a separate case-control study. In the healthy smokers study, a lower urinary ratio of NNAL-glucuronide to NNAL was observed in women with the UGT2B17 deletion (0/0) as compared with women with either the wild-type or heterozygous genotypes (P = 0.058). There were no significant differences in this ratio by genotype in men (P = 0.597). In the case-control study of 398 lung cancer patients and 697 community controls, the UGT2B17 deletion (0/0) was associated with a significant increase in risk of lung cancer in women (odds ratio, 2.0; 95% confidence interval, 1.01-4.0). The risk for the subset of women with lung adenocarcinoma was 2.8 (95% confidence interval, 1.2-6.3). The deletion was not associated with other lung histologic types in women and was not associated with the risk for any lung histologic types in men. The association of the UGT2B17 deletion with increased lung adenocarcinoma in women is consistent with its association with decreased NNAL glucuronidation rates in women and with studies showing that NNAL is a selective inducer of lung adenocarcinoma in experimental animals.