The bladder urothelium not only provides a diffusion barrier but it also serves a sensor function and releases signalling molecules that are considered to act in a paracrine and autocrine fashion, e.g. by acetylcholine. Its actions are conferred by two classes of receptors, i.e. G-protein-coupled muscarinic receptors (MR) and ionotropic nicotinic receptors (nAChR). In this study we set out to determine the expression and distribution of all MR subtypes (M1R-M5R) and nAChR alpha-subunits 7, 9 and 10 in the human urothelium by means of RT-PCR and immunohistochemistry, respectively. Real-time RT-PCR revealed a rank order of MR subtype expression of M2R>>M3R=M5R>M4R=M1R. Immunohistochemistry demonstrated differential distribution patterns with M1R being restricted to basal cells, M2R nearly exclusively found in umbrella cells, whereas M3R and M4R were homogenously distributed and M5R was seen in a decreasing gradient from luminal to basal. As for nAChR alpha-subunits, rank order of expression is alpha7>>alpha10>alpha9, and they were observed throughout the urothelium with a gradient decreasing from luminal to basal in intensity. In conclusion, the human urothelium carries multiple cholinergic receptor subtypes, with predominant expression of M2R, M3R and alpha7-nAChR. Their distribution as well as that of the less expressed subtypes is layer-specific in the urothelium. In view of the multiplicity of pathways to which different cholinergic receptor subtypes are coupled, we propose that this layer-specific distribution serves to stratify cholinergic regulation of human urothelial function.