In the period from 1971 to 1986, both sexes of the B6CF1 (C57BL/6 x BALB/c) mouse were exposed at 110 +/- 7 days of age to single, 24 once-weekly or 60 once-weekly doses of fission neutrons or 60Co gamma rays. A small group of males was also exposed to gamma rays for 22 h/day, 5 days/week, for either 23 or 59 weeks, the elapsed times for the 24 and 60 once-weekly series. All mice were followed for their natural lifetimes. A gross pathology report is available on 32,000 animals, and a histopathology record is available on about 19,000. About 85% died with or from one or more neoplastic diseases. The principal tumors observed at death were of lymphoreticular (45-60%), vascular (20%), or pulmonary (35-50%) origin. From 4 to 10% died with fibrosarcomas, hepatocellular tumors, ovarian tumors, and tumors of the Harderian, adrenal, and pituitary glands. Dose-response equations (linear and linear-quadratic) were fitted to the data for deaths from and occurrences of eight different individual or groups of tumors. Equations were constrained through the control intercepts and fitted separately for the two sexes, the two radiation qualities, and all exposure patterns for the two intervals of 600-799 days and 800-999 days from first exposure. RBE values were derived from the ratios of linear coefficients of dose-response curves. RBE values increased as dose was protracted, largely due to the reduced effectiveness of protracted gamma irradiation; however, about 28% of the increase can be attributed to the increase in neutron-induced injury caused by dose protraction. Highest RBE values were seen for tumors of epithelial tissue origin and the lowest for tumors of connective tissue origin. The range for significant values was from about 2 to over 50. Nonneoplastic diseases accounted for about 5% of all deaths, and 10% were classified as from unknown causes. Neither category responded to differences in radiation quality or exposure patterns.