Objective: The high prevalence of systemic lupus erythematosus (SLE) among African American women may be due to environmental exposures, genetic factors, or a combination of factors. Our goal was to assess association of residential proximity to hazardous waste sites and genetic variation in 3 glutathione Stransferase (GST) genes (GSTM1, GSTT1, and GSTP1) with age at diagnosis of SLE.
Methods: Residential histories were obtained by interviewing 93 SLE patients from 3 predominantly African American neighborhoods in Boston. Residential addresses and locations of 416 hazardous waste sites in the study area were geocoded using ArcView software. Time-varying Cox models were used to study the effect of residential proximity to hazardous sites, GST genotype, and interaction between genotype and exposure in determining age at diagnosis.
Results: The prevalence of SLE among African American women in these neighborhoods was 3.56 SLE cases per 1,000. Homozygosity for GSTM1-null and GSTP1 Ile105Val in combination was associated with earlier SLE diagnosis (P = 0.03), but there was no association with proximity to 416 hazardous sites. Available data on specific site contaminants suggested that, at a subset of 67 sites, there was higher potential risk for exposure to volatile organic compounds (P < 0.05 with Bonferroni correction). GST genotypes had a significant interaction with proximity (P = 0.03) in analyses limited to these sites.
Conclusion: There was no independent association between residential proximity to hazardous waste sites and the risk of earlier SLE diagnosis in this urban population. However, analysis of a limited number of sites indicated that the risk of earlier SLE associated with proximity to hazardous sites might be modulated by GST polymorphisms.