The function of the subnuclear structure the promyelocytic leukaemia (PML) body is unclear largely because of the functional heterogeneity of its constituents. Here, we provide the evidence for a direct link between PML, higher-order chromatin organization and gene regulation. We show that PML physically and functionally interacts with the matrix attachment region (MAR)-binding protein, special AT-rich sequence binding protein 1 (SATB1) to organize the major histocompatibility complex (MHC) class I locus into distinct higher-order chromatin-loop structures. Interferon gamma (IFNgamma) treatment and silencing of either SATB1 or PML dynamically alter chromatin architecture, thus affecting the expression profile of a subset of MHC class I genes. Our studies identify PML and SATB1 as a regulatory complex that governs transcription by orchestrating dynamic chromatin-loop architecture.