Once thought to result from passive precipitation of calcium and phosphate, it now appears that vascular calcification is a consequence of tightly regulated processes that culminate in organized extracellular matrix deposition by osteoblast-like cells. These cells may be derived from stem cells (circulating or within the vessel wall) or differentiation of existing cells, such as smooth muscle cells (SMCs) or pericytes. Several factors induce this transition, including bone morphogenetic proteins, oxidant stress, high phosphate levels, parathyroid hormone fragments, and vitamin D. Once the osteogenic phenotype is induced, cells gain a distinctive molecular fingerprint, marked by the transcription factor core binding factor alpha1. Alternatively, loss of inhibitors of mineralization, such as matrix gamma-carboxyglutamic acid Gla protein, fetuin, and osteopontin, also contribute to vascular calcification. The normal balance between promotion and inhibition of calcification becomes dysregulated in chronic kidney disease, diabetes mellitus, atherosclerosis, and as a consequence of aging. Once the physiological determinants of calcification are perturbed, calcification may occur at several sites in the cardiovascular system, including the intima and media of vessels and cardiac valves. Here, calcification may occur through overlapping yet distinct molecular mechanisms, each with different clinical ramifications. A variety of imaging techniques are available to visualize vascular calcification, including fluoroscopy, echocardiography, intravascular ultrasound, and electron beam computed tomography. These imaging modalities vary in sensitivity and specificity, as well as clinical application. Through greater understanding of both the mechanism and clinical consequences of vascular calcification, future therapeutic strategies may be more effectively designed and applied.