We investigated time- and intensity-dependent effects of exercise on phosphorylation of Akt substrate of 160 kDa (AS160) in human skeletal muscle. Subjects performed cycle exercise for 90 min (67% VO2 peak, n=8), 20 min (80% VO2 peak, n=11), 2 min (110% of peak work rate, n=9), or 30 s (maximal sprint, n=10). Muscle biopsies were obtained before, during, and after exercise. In trial 1, AS160 phosphorylation increased at 60 min (60%, P=0.06) and further at 90 min of exercise (120%, P<0.05). alpha2beta2gamma3-AMP-activated protein kinase (AMPK) activity increased significantly to a steady-state level after 30 min, whereas alpha2beta2gamma1-AMPK activity increased after 60 min of exercise with a further significant increase after 90 min. alpha2beta2gamma1-AMPK activity and AS160 phosphorylation correlated positively (r2=0.55). In exercise trials 2, 3, and 4, alpha2beta2gamma3-AMPK activity but neither AS160 phosphorylation nor alpha2beta2gamma1-AMPK activity increased. Akt Ser473 phosphorylation was unchanged in all trials, whereas Akt Thr308 phosphorylation increased significantly in trial 3 and 4 only. These results show that AS160 is phosphorylated in a time-dependent manner during moderate-intensity exercise and suggest that alpha2beta2gamma1- but not alpha2beta2gamma3-AMPK may act in a pathway responsible for exercise-induced AS160 phosphorylation. Furthermore, we show that AMPK complexes in skeletal muscle are activated differently depending on exercise intensity and duration.