SHP-2 is a tyrosine phosphatase which functions as a positive regulator downstream of RTKs, activating growth-stimulatory signalling pathways. To date, very few G protein-coupled receptors (GPCRs) have been shown to be connected to SHP-2 and very little is known about the positive role of SHP-2 in GPCR signalling. The CCK2 receptor (CCK2R), a GPCR, is now recognized to mediate mitogenic effects of gastrin on gastrointestinal cells. In the present study, we demonstrate the role of SHP-2 in the activation of the AKT pathway by the CCK2R in COS-7 cells transfected with the CCK2R and in a pancreatic cancer cell line expressing the endogenous receptor. Using surface plasmon resonance analysis, we identified a highly conserved ITIM motif, containing the tyrosine residue 438, located in the C-terminal intracellular tail of the CCK2R which directly interacts with the SHP-2 SH2 domains. The interaction was confirmed by pull down assays and co-immunoprecipitation of the receptor with SHP-2. This interaction was transiently increased following gastrin stimulation of the CCK2R and correlated with the tyrosine phosphorylation of SHP-2. Mutational analysis of the key ITIM residue 438 confirmed that the CCK2R ITIM sequence is required for interaction with SHP-2 and the activation of the AKT pathway.