We hypothesized that aggregation of bacteria and hemocytes at the gill, which occurs as part of the shrimp's antibacterial immune defenses, would impair normal respiratory function and thereby disrupt aerobic metabolism. Changes in oxygen uptake and lactate accumulation were determined in Litopenaeus vannamei, the Pacific white shrimp, following injection with either saline (control) or a strain of the gram-negative bacterium Vibrio campbellii that is pathogenic in crustaceans. The rate of oxygen uptake was determined during the first 4 h after injection and after 24 h. Injection of bacteria decreased oxygen uptake by 27% (from 11.0 to 8.2 micromol g-1 h-1) after 4 h, while saline-injected shrimp showed no change. Decreased oxygen uptake persisted 24 h after Vibrio injection. In well-aerated water, resting whole-animal lactic acid levels increased in shrimp injected with bacteria (mean=2.59 micromol lactate g-1+/-0.39 SEM, n=8) compared to saline-injected control shrimp, but this difference did not persist at 24 h. Exposure to hypercapnic hypoxia (PCO2=1.8 kPa, PO2=6.7 kPa) also resulted in significant whole-body lactic acid differences (mean=3.99 and 1.8 micromol g-1 tissue in Vibrio and saline-injected shrimp, respectively). Our results support the hypothesis that the crustacean immune response against invading bacteria impairs normal metabolic function, resulting in depression of oxygen uptake and slightly increased anaerobic metabolism.