We have developed a solid-state NMR method for observing the signals due to 13C spins of a peptide in the close vicinity of 31P and 2H spins in deuterated phospholipid bilayers. The signal intensities in 13C high-resolution NMR spectra directly indicate the depolarization of 1H by 1H-31P and 1H-2H dipolar couplings under multiple-contact cross-polarization. This method was applied to a fully 13C-, 15N-labeled 14-residue peptide, mastoparan-X (MP-X), bound to phospholipid bilayers whose fatty acyl chains are deuterated. The 13C NMR spectra for the depolarization were simulated from the chemical shifts and structure of membrane-bound MP-X previously determined and the distribution of 2H and 31P spins in lipid bilayers. The minimization of RMSD between the simulated and the experimental spectra showed that the amphiphilic alpha-helix of MP-X was located in the interface between the water layer and the hydrophobic domain of the bilayer, with nonpolar residues facing the phosphorus atoms and alkyl chains of the lipids.