Zinc finger protein transcription factors (ZFP TFs) have been designed to control the expression of endogenous genes in a variety of cells. However, thus far the use of engineered ZFP TFs in germline transgenic settings has been restricted to plants. Here we report that ZFP TFs can regulate gene expression in transgenic Drosophila. To demonstrate this, we targeted the promoter of the well-characterized fushi tarazu (ftz) gene with a ZFP TF activator using the VP16 activation domain from Herpes simplex virus, and ZFP TF repressors using the Drosophila methyl-CpG binding domain (MBD)-like Delta protein. Heat-shock-inducible expression of the ZFP TF activator and repressors resulted in reciprocal effects on ftz regulation, as deduced from changes in the staining pattern and intensity of ftz and en gene expression, and from the cuticular analysis of first instar larvae. These data demonstrate the utility of ZFP TFs as tools for controlling gene expression in the context of a metazoan organism.