Modulating beta-lapachone release from polymer millirods through cyclodextrin complexation

J Pharm Sci. 2006 Oct;95(10):2309-19. doi: 10.1002/jps.20721.

Abstract

Beta-lapachone (beta-lap) is a novel anticancer agent that kills tumors overexpressing the NADPH: quinone oxidoreductase enzyme. However, poor aqueous solubility and low bioavailability hinder its therapeutic applications. Herein we describe the development of poly(D,L-lactide-co-glycolide) (PLGA) polymer millirods for local delivery of beta-lap. The objective was to investigate the use of beta-lap inclusion complexes with cyclodextrins (CDs) to control beta-lap release kinetics from PLGA millirods. Differential scanning calorimetry was performed to measure drug/polymer interactions, complexation efficiency with different CDs, and complex/polymer interactions. beta-Lap was found to have a solid-state solubility of 13% in PLGA. beta-Lap dissolution in PLGA matrix lowered the glass transition temperature of PLGA from 44 to 31 degrees C, and led to a slow release of beta-lap (8.8+/-1.2% release after 22 days). For beta-lap and CD interactions, increasing complexation efficiency was observed in the order of alpha-CD, gamma-CD, and beta-CD. beta-Lap complexation with hydroxypropyl-beta-cyclodextrin (HPbeta-CD) prevented drug dissolution in PLGA, and led to fast release (79.6+/-2.1% after 2 days). Sustained drug release was achieved when beta-lap was complexed with alpha-CD or gamma-CD. These data demonstrate the ability to tailor beta-lap release kinetics via CD complexation, providing exciting opportunities for the use of beta-lap-millirods for intratumoral drug delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Antineoplastic Agents / chemistry
  • Calorimetry, Differential Scanning
  • Cyclodextrins / chemistry*
  • Drug Delivery Systems
  • Kinetics
  • Lactic Acid / chemistry*
  • Microscopy, Electron, Scanning
  • Naphthoquinones / chemistry*
  • Polyglycolic Acid / chemistry*
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polymers / chemistry*
  • Solubility

Substances

  • Antineoplastic Agents
  • Cyclodextrins
  • Naphthoquinones
  • Polymers
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Polyglycolic Acid
  • Lactic Acid
  • beta-lapachone