PTP-S2/TC45 is a nuclear protein tyrosine phosphatase that activates p53 and induces caspase 1-dependent apoptosis. We analyzed the role of ICE protease-activating factor (Ipaf), an activator of caspase 1 in p53-dependent apoptosis. We also determined the sequence of events that lead to apoptosis upon caspase 1 activation by Ipaf. PTP-S2 expression induced Ipaf mRNA in MCF-7 cells which was dependent on p53. PTP-S2-induced apoptosis was inhibited by a dominant-negative mutant of Ipaf and also by an Ipaf-directed short-hairpin RNA. Doxorubicin-induced apoptosis was potentiated by the expression of caspase 1 (but not by a catalytic mutant of caspase 1) and required endogenous Ipaf. Doxorubicin treatment of MCF-7 cells resulted in activation of exogenous caspase 1, which was partly dependent on endogenous Ipaf. An activated form of Ipaf induced caspase 1-dependent apoptosis that was inhibited by Bcl2 and also by a dominant inhibitor of caspase 9 (caspase 9s). Caspase 1-dependent apoptosis induced by doxorubicin was also inhibited by Bcl2 and caspase 9s, but caspase 1 activation by activated Ipaf was not inhibited by Bcl2. Mitochondrial membrane permeabilization was induced by caspase 1 and activated Ipaf, which was inhibited by Bcl2, but not by caspase 9s. Expression of caspase 1 with activated Ipaf resulted in the activation of Bax at mitochondria. Our results suggest that Ipaf is involved in PTP-S2-induced apoptosis and that caspase 1, when activated by Ipaf, causes release of mitochondrial proteins (cytochrome c and Omi) through Bax activation, thereby functioning as an initiator caspase.