Sonoluminescence is a phenomenon involving the transduction of sound into light. The detailed mechanism as well as the energy-focusing potentials are not yet fully explored and understood. So far only optical photons are observed, while emissions in the ultra-violet range are only inferred. By doping the fluorescent dye quinine into water with dilute sulphuric acid, the high energy photons can be converted into the optical photons with slower decay constants. These sonoluminescence and fluorescent emissions were observed in coincidence, and the emitted signals of the two modes can be differentiated by their respective timing profiles. Plans for using this technique as a diagnostic tool to quantitatively study ultra-violet and other high energy emissions in sonoluminescence are discussed.