Biological enhancement of tetrachloroethene dissolution and associated microbial community changes

Environ Sci Technol. 2006 Jun 1;40(11):3623-33. doi: 10.1021/es051493g.

Abstract

A bench-scale study was performed to evaluate the enhancement of tetrachloroethene (PCE) dissolution from a dense nonaqueous phase liquid (DNAPL) source zone due to reductive dechlorination. The study was conducted in a pair of two-dimensional bench-scale aquifer systems using soil and groundwater from Dover Air Force Base, DE. After establishment of PCE source zones in each aquifer system, one was biostimulated (addition of electron donor) while the other was biostimulated and then bioaugmented with the KB1 dechlorinating culture. Biostimulation resulted in the growth of iron-reducing bacteria (Geobacter) in both systems as a result of the high iron content of the Dover soil. After prolonged electron donor addition methanogenesis dominated, but no dechlorination was observed. Following bioaugmentation of one system, dechlorination to ethene was achieved, coincident with growth of introduced Dehalococcoides and other microbes in the vicinity and downgradient of the PCE DNAPL (detected using DGGE and qPCR). Dechlorination was not detected in the nonbioaugmented system over the course of the study, indicating that the native microbial community, although containing a member of the Dehalococcoides group, was not able to dechlorinate PCE. Over 890 days, 65% of the initial emplaced PCE was removed in the bioaugmented, dechlorinating system, in comparison to 39% removal by dissolution from the nondechlorinating system. The maximum total ethenes concentration (3 mM) in the bioaugmented system occurred approximately 100 days after bioaugmentation, indicating that there was at least a 3-fold enhancement of PCE dissolution atthis time. Removal rates decreased substantially beyond this time, particularly during the last 200 days of the study, when the maximum concentrations of total ethenes were only about 0.5 mM. However, PCE removal rates in the dechlorinating system remained more than twice the removal rates of the nondechlorinating system. The reductions in removal rates over time are attributed to both a shrinking DNAPL source area, and reduced flow through the DNAPL source area due to bioclogging and pore blockage from methane gas generation.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Biodegradation, Environmental
  • Biomass
  • Ecosystem*
  • Environmental Monitoring / instrumentation
  • Environmental Monitoring / methods
  • Environmental Pollutants / analysis
  • Ethylenes / analysis
  • Ethylenes / chemistry
  • Geobacter / growth & development
  • Geobacter / metabolism*
  • Methane / analysis
  • Oxidation-Reduction
  • Soil Microbiology*
  • Tetrachloroethylene / analysis
  • Tetrachloroethylene / metabolism*

Substances

  • Environmental Pollutants
  • Ethylenes
  • ethylene
  • Methane
  • Tetrachloroethylene