5-Hydroxytryptamine2A (5-HT2A) receptor regulation is atypical compared to most other monoaminergic receptors in that chronic administration of both antagonists and agonists results in down-regulation of cortical 5-HT2A receptor number and the functional in vitro and in vivo effects. We have recently found that midline thalamic lesions, which appeared to block glutamate release induced by activation of 5-HT2A receptors, also increased 5-HT2A receptor binding in layers I and Va of the medial prefrontal cortex (mPFC). These layers contain the highest density of both 5-HT2A receptors and thalamocortical terminals from the midline and intralaminar thalamic nuclei. These findings suggest the hypothesis that excitatory amino acid release plays a role in regulation of postsynaptic 5-HT2A receptors, and that down-regulation of 5-HT2A receptors by 5-HT2A agonists may not be attributed only to simple occupancy of the receptor by direct agonists. Therefore, we examined the effect of a single 30 min pretreatment with the metabotropic glutamate2/3 (mGlu2/3) receptor agonist (1S,2S,5R,6S)-2-aminobicyclo[3.1.0] hexane-2,6-dicarboxylate monohydrate (LY354740; 10 mg/kg, i.p.) on the second of three consecutive days of 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl (DOI) treatment (1.25 mg/kg, i.p.). The subchronic DOI administration significantly decreased binding of [125I]DOI to 5-HT2A receptors in layers I and Va of the mPFC by approximately 25%. In contrast, a single dose of LY354740 on Day 2 of this regimen completely blocked the DOI-induced down-regulation. Thus, a presumed hypoglutamatergic state secondary to thalamic lesions and increased glutamate release induced by a subchronic regimen of a 5-HT2A agonist (and hallucinogenic drug) differentially regulate prefrontal cortical 5-HT2A receptor binding.