Activation-induced cytidine deaminase (AID) initiates Ig class switch recombination and somatic hypermutation by producing U:G mismatches in DNA. These mismatches also have the potential to induce DNA damage including double-stranded breaks and chromosome translocations; therefore, strict regulation of AID is important for maintaining genomic stability. In addition to transcriptional regulation, it has been proposed that phosphorylation can also modulate AID activity. Using a combination of MS and immunochemical approaches we found that 5-15% of the AID expressed in activated B cells was phosphorylated at serine-38 (p38AID). This form of AID was enriched in the chromatin fraction in activated B cells, suggesting a role for phosphorylation in targeting AID to DNA. Consistent with this idea, serine-38 to alanine mutant AID (AID(S38A)) showed diminished somatic hypermutation activity on artificial and physiological DNA targets. We conclude that a small fraction of AID is phosphorylated in activated B cells and that the modified form contributes disproportionately to hypermutation.