Nucleoside antiretroviral agents are chiral small molecules that have distinct advantages compared to other classes including long intracellular half-lives, low protein binding, sustained antiviral response when a dose is missed, and ease of chemical manufacture. They mimic natural nucleosides and target a unique but complex viral polymerase that is essential for viral replication. They remain the cornerstone of highly active antiretroviral therapy (HAART) and are usually combined with non-nucleoside reverse [corrected] transcriptase and protease inhibitors to provide powerful antiviral responses to prevent or delay the emergence of drug-resistant human immunodeficiency virus (HIV). The pharmacological and virological properties of a selected group of nucleoside analogs are described. Some of the newer nucleoside analogs have a high genetic barrier to resistance development. The lessons learned are that each nucleoside analog should be treated as a unique molecule since any structural modification, including a change in the enantiomeric form, can affect metabolism, pharmacokinetics, efficacy, toxicity and resistance profile.