Disruption of the Y-box binding protein-1 results in suppression of the epidermal growth factor receptor and HER-2

Cancer Res. 2006 May 1;66(9):4872-9. doi: 10.1158/0008-5472.CAN-05-3561.

Abstract

The overexpression of the epidermal growth factor receptor (EGFR) and HER-2 underpin the growth of aggressive breast cancer; still, it is unclear what governs the regulation of these receptors. Our laboratories recently determined that the Y-box binding protein-1 (YB-1), an oncogenic transcription/translation factor, induced breast tumor cell growth in monolayer and in soft agar. Importantly, mutating YB-1 at Ser(102), which resides in the DNA-binding domain, prevented growth induction. We reasoned that the underlying cause for growth attenuation by YB-1(Ser(102)) is through the regulation of EGFR and/or HER-2. The initial link between YB-1 and these receptors was sought by screening primary tumor tissue microarrays. We determined that YB-1 (n = 389 cases) was positively associated with EGFR (P < 0.001, r = 0.213), HER-2 (P = 0.008, r = 0.157), and Ki67 (P < 0.0002, r = 0.219). It was inversely linked to the estrogen receptor (P < 0.001, r = -0.291). Overexpression of YB-1 in a breast cancer cell line increased HER-2 and EGFR. Alternatively, mutation of YB-1 at Ser(102) > Ala(102) prevented the induction of these receptors and rendered the cells less responsive to EGF. The mutant YB-1 protein was also unable to optimally bind to the EGFR and HER-2 promoters based on chromatin immunoprecipitation. Furthermore, knocking down YB-1 with small interfering RNA suppressed the expression of EGFR and HER-2. This was coupled with a decrease in tumor cell growth. In conclusion, YB-1(Ser(102)) is a point of molecular vulnerability for maintaining the expression of EGFR and HER-2. Targeting YB-1 or more specifically YB-1(Ser(102)) are novel approaches to inhibiting the expression of these receptors to ultimately suppress tumor cell growth.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast Neoplasms / enzymology*
  • Breast Neoplasms / genetics
  • Breast Neoplasms / metabolism
  • Cell Line, Tumor
  • ErbB Receptors / antagonists & inhibitors*
  • ErbB Receptors / biosynthesis
  • ErbB Receptors / genetics
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Mutation
  • Promoter Regions, Genetic
  • Receptor, ErbB-2 / antagonists & inhibitors*
  • Receptor, ErbB-2 / biosynthesis
  • Receptor, ErbB-2 / genetics
  • Y-Box-Binding Protein 1 / antagonists & inhibitors
  • Y-Box-Binding Protein 1 / biosynthesis
  • Y-Box-Binding Protein 1 / genetics*
  • Y-Box-Binding Protein 1 / metabolism

Substances

  • Y-Box-Binding Protein 1
  • ErbB Receptors
  • Receptor, ErbB-2