To find novel cytoplasmic binding partners of the alpha1D-adrenergic receptor (AR), a yeast two-hybrid screen using the alpha1D-AR C terminus as bait was performed on a human brain cDNA library. Alpha-syntrophin, a protein containing one PDZ domain and two pleckstrin homology domains, was isolated in this screen as an alpha1D-AR-interacting protein. Alpha-syntrophin specifically recognized the C terminus of alpha1D- but not alpha1A- or alpha1B-ARs. In blot overlay assays, the PDZ domains of syntrophin isoforms alpha, beta1, and beta2 but not gamma1 or gamma2 showed strong selective interactions with the alpha1D-AR C-tail fusion protein. In transfected human embryonic kidney 293 cells, full-length alpha1D- but not alpha1A- or alpha1B-ARs co-immunoprecipitated with syntrophins, and the importance of the receptor C terminus for the alpha1D-AR/syntrophin interaction was confirmed using chimeric receptors. Mutation of the PDZ-interacting motif at the alpha1D-AR C terminus markedly decreased inositol phosphate formation stimulated by norepinephrine but not carbachol in transfected HEK293 cells. This mutation also dramatically decreased alpha1D-AR binding and protein expression. In addition, stable overexpression of alpha-syntrophin significantly increased alpha1D-AR protein expression and binding but did not affect those with a mutated PDZ-interacting motif, suggesting that syntrophin plays an important role in maintaining receptor stability by directly interacting with the receptor PDZ-interacting motif. This direct interaction may provide new information about the regulation of alpha1D-AR signaling and the role of syntrophins in modulating G protein-coupled receptor function.