Ion channel currents, neural firing patterns, and brain BOLD signals display 1/f-type fluctuations or fractal properties in time. By design, fMRI methods attempt to minimize the contribution of variance from low-frequency physiological 1/f-noise. New fMRI methods are described to visualize and measure 1/f-type BOLD fluctuations in volunteers recalling affectively neutral or emotional memories or meditating (i.e., attending to breathing) then retrospectively rating emotional content. A wavelet scaling exponent (alpha) was used to characterize signals from 0.015625 to 0.5Hz in cerebellar lobules VIII to X of the vermis (posterior inferior vermis; PIV), a region coordinating balance, eye tracking, locomotion, and vascular tone, and a possible site of pathology in attention deficit hyperactivity disorder (ADHD).
Results: Changes in alpha and emotional measures were correlated in PIV voxels (r = 0.622, d.f .= 14, P < 0.0005), but not other regions examined. In contrast, conventional means and standard deviations of PIV voxels were unchanged. Methylphenidate, shown to decrease slow oscillations in rodent basal ganglia [Ruskin DN, Bergstrom DA, Shenker A, Freeman LE, Baek D, Walters JR. Drugs used in the treatment of attention-deficit/hyperactivity disorder affect postsynaptic firing rate and oscillation without preferential dopamine autoreceptor action. Biol Psychiatry 2001;49:340-50.], abolished task-dependent alpha changes in the PIV of an adult with ADHD. Wavelet analysis of long BOLD time series appears well suited to fractal physiology and studies of pharmacologically modulated cerebellar-thalamic-cortical function in ADHD or other psychiatric disorders.