Cells and their viral and cellular parasites are genetically highly diverse, and their genomes contain signs of past and present variation and mobility. The great adaptive potential of viruses, conferred on them by high mutation rates and quasispecies dynamics, demands new strategies for viral disease prevention and control. This necessitates a more detailed knowledge of viral population structure and dynamics. Here we review studies with the important animal pathogen Foot-and-mouth disease virus (FMDV) that document modulating effects of the mutant spectra that compose viral populations. As a consequence of interactions within mutant spectra, enhanced mutagenesis may lead to viral extinction, and this is currently investigated as a new antiviral strategy, termed virus entry into error catastrophe.