Objective: The pathophysiology of HIV-1-related intestinal dysfunction is largely unknown. We previously found that the transactivator factor peptide (Tat) produced by HIV-1 induces ion secretion and inhibits cell proliferation in human enterocytes. Because sugar malabsorption is a frequent feature in AIDS patients, we evaluated whether Tat inhibits intestinal glucose absorption.
Design and methods: We measured Na-D-glucose symporter (SGLT-1) activity and determined its phenotypic expression in Caco-2 cells, in the presence and absence of Tat, in uptake experiments using a non-metabolized radiolabelled glucose analogue, and by western blot analysis, respectively. alpha-Tubulin staining was used to study the effects exerted by Tat on cell structure.
Results: Tat dose dependently inhibited glucose uptake by human enterocytes. This effect was prevented by anti-Tat polyclonal antibodies and by L-type Ca channels agonist Bay K8644. Western blot analysis of cellular lysates and brush-border membrane preparations showed that Tat induced SGLT-1 missorting. Tat also caused a dramatic decrease in alpha-tubulin staining, which indicates dysruption of the cytoskeleton organization.
Conclusions: Tat acutely impairs intestinal glucose absorption through SGLT-1 missorting. This result indicates that Tat is directly involved in AIDS-associated intestinal dysfunction.