Little is known about directed motility of bacteria that move by type IV pilus-mediated (twitching) motility. Here, we found that during periodic cell reversals of Myxoccocus xanthus, type IV pili were disassembled at one pole and reassembled at the other pole. Accompanying these reversals, FrzS, a protein required for directed motility, moved in an oscillatory pattern between the cell poles. The frequency of the oscillations was controlled by the Frz chemosensory system, which is essential for directed motility. Pole-to-pole migration of FrzS appeared to involve movement along a filament running the length of the cell. FrzS dynamics may thus regulate cell polarity during directed motility.