Novel pheochromocytoma susceptibility loci identified by integrative genomics

Cancer Res. 2005 Nov 1;65(21):9651-8. doi: 10.1158/0008-5472.CAN-05-1427.

Abstract

Pheochromocytomas are catecholamine-secreting tumors that result from mutations of at least six different genes as components of distinct autosomal dominant disorders. However, there remain familial occurrences of pheochromocytoma without a known genetic defect. We describe here a familial pheochromocytoma syndrome consistent with digenic inheritance identified through a combination of global genomics strategies. Multipoint parametric linkage analysis revealed identical LOD scores of 2.97 for chromosome 2cen and 16p13 loci. A two-locus parametric linkage analysis produced maximum LOD score of 5.16 under a double recessive multiplicative model, suggesting that both loci are required to develop the disease. Allele-specific loss of heterozygosity (LOH) was detected only at the chromosome 2 locus in all tumors from this family, consistent with a tumor suppressor gene. Four additional pheochromocytomas with a similar genetic pattern were identified through transcription profiling and helped refine the chromosome 2 locus. High-density LOH mapping with single nucleotide polymorphism-based array identified a total of 18 of 62 pheochromocytomas with LOH within the chromosome 2 region, which further narrowed down the locus to <2 cM. This finding provides evidence for two novel susceptibility loci for pheochromocytoma and adds a recessive digenic trait to the increasingly broad genetic heterogeneity of these tumors. Similarly, complex traits may also be involved in other familial cancer syndromes.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Adrenal Gland Neoplasms / genetics*
  • Adult
  • Chromosomes, Human, Pair 16
  • Chromosomes, Human, Pair 2
  • Female
  • Gene Expression Profiling
  • Genetic Predisposition to Disease
  • Genome, Human
  • Genomics / methods
  • Humans
  • Loss of Heterozygosity
  • Male
  • Middle Aged
  • Pedigree
  • Pheochromocytoma / genetics*