Rheumatoid arthritis is a chronic inflammatory disease with a high prevalence and substantial socioeconomic burden. Despite intense research efforts, its aetiology and pathogenesis remain poorly understood. To identify novel genes and/or cellular pathways involved in the pathogenesis of the disease, we utilized a well-recognized tumour necrosis factor-driven animal model of this disease and performed high-throughput expression profiling with subtractive cDNA libraries and oligonucleotide microarray hybridizations, coupled with independent statistical analysis. This twin approach was validated by a number of different methods in other animal models of arthritis as well as in human patient samples, thus creating a unique list of disease modifiers of potential therapeutic value. Importantly, and through the integration of genetic linkage analysis and Gene Ontology-assisted functional discovery, we identified the gelsolin-driven synovial fibroblast cytoskeletal rearrangements as a novel pathophysiological determinant of the disease.