We investigated the ability of human antibodies induced by Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination to protect against mycobacterial infections. Serum samples containing mycobacterium-specific antibodies were obtained from volunteers who had received two intradermal BCG vaccinations 6 months apart. Significant increases in lipoarabinomannan (LAM)-specific immunoglobulin G (IgG) were detected after both the primary and booster vaccinations. Effects of mycobacterium-specific antibodies on surface binding and internalization of BCG by neutrophils and monocytes/macrophages were studied, using green fluorescent protein (gfp)-expressing BCG. Surface-bound gfp-expressing BCG were distinguished from intracellular BCG by surface labeling with LAM-specific monoclonal antibody. Internalization of BCG by phagocytic cells was shown to be significantly enhanced in postvaccination serum samples. Furthermore, the inhibitory effects of neutrophils and monocytes/macrophages on mycobacterial growth were significantly enhanced by BCG-induced antibodies. The growth-inhibiting effects of postvaccination sera were reversed by preabsorption of IgG with Protein G. Finally, the helper effects of antimycobacterial antibodies for the induction of cell-mediated immune responses were investigated. BCG-induced antibodies significantly enhanced proliferation and gamma interferon production in mycobacterium-specific CD4(+) and CD8(+) T cells, as well as the proportion of proliferating and degranulating CD8(+) T cells. We conclude that mycobacterium-specific antibodies are capable of enhancing both innate and cell-mediated immune responses to mycobacteria.