Contrasting effects of Elg1-RFC and Ctf18-RFC inactivation in the absence of fully functional RFC in fission yeast

Nucleic Acids Res. 2005 Jul 21;33(13):4078-89. doi: 10.1093/nar/gki728. Print 2005.

Abstract

Proliferating cell nuclear antigen loading onto DNA by replication factor C (RFC) is a key step in eukaryotic DNA replication and repair processes. In this study, the C-terminal domain (CTD) of the large subunit of fission yeast RFC is shown to be essential for its function in vivo. Cells carrying a temperature-sensitive mutation in the CTD, rfc1-44, arrest with incompletely replicated chromosomes, are sensitive to DNA damaging agents, are synthetically lethal with other DNA replication mutants, and can be suppressed by mutations in rfc5. To assess the contribution of the RFC-like complexes Elg1-RFC and Ctf18-RFC to the viability of rfc1-44, genes encoding the large subunits of these complexes have been deleted and overexpressed. Inactivation of Ctf18-RFC by the deletion of ctf18+, dcc1+ or ctf8+ is lethal in an rfc1-44 background showing that full Ctf18-RFC function is required in the absence of fully functional RFC. In contrast, rfc1-44 elg1Delta cells are viable and overproduction of Elg1 in rfc1-44 is lethal, suggesting that Elg1-RFC plays a negative role when RFC function is inhibited. Consistent with this, the deletion of elg1+ is shown to restore viability to rfc1-44 ctf18Delta cells.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Carrier Proteins / genetics*
  • Carrier Proteins / physiology
  • DNA Mutational Analysis
  • DNA Replication
  • DNA-Binding Proteins / chemistry
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / physiology*
  • Gene Deletion
  • Genes, Lethal
  • Molecular Sequence Data
  • Protein Structure, Tertiary
  • Protein Subunits / genetics
  • Replication Protein C
  • Schizosaccharomyces / genetics*
  • Schizosaccharomyces pombe Proteins / chemistry
  • Schizosaccharomyces pombe Proteins / genetics*
  • Schizosaccharomyces pombe Proteins / physiology
  • Transcription Factors / chemistry
  • Transcription Factors / genetics*
  • Transcription Factors / physiology

Substances

  • Carrier Proteins
  • Ctf18 protein, S pombe
  • DNA-Binding Proteins
  • Elg1 protein, S pombe
  • Protein Subunits
  • Rfc1 protein, S pombe
  • Schizosaccharomyces pombe Proteins
  • Transcription Factors
  • Replication Protein C