The phase-resetting curve (PRC) of a neural oscillator describes the effect of a perturbation on its periodic motion and is therefore useful to study how the neuron responds to stimuli and whether it phase locks to other neurons in a network. Combining theory, computer simulations and electrophysiological experiments we present a simple method for estimating the PRC of real neurons. This allows us to simplify the complex dynamics of a single neuron to a phase model. We also illustrate how to infer the existence of coherent network activity from the estimated PRC.