The MTHFR 1298A>C polymorphism and genomic DNA methylation in human lymphocytes

Cancer Epidemiol Biomarkers Prev. 2005 Apr;14(4):938-43. doi: 10.1158/1055-9965.EPI-04-0601.

Abstract

Methylenetetrahydrofolate reductase (MTHFR) balances the pool of folate coenzymes in one-carbon metabolism for DNA synthesis and methylation, both implicated in carcinogenesis. Epidemiologic studies have shown that two functional polymorphisms in MTHFR gene, 677C>T and 1298A>C, are related to increased cancer risk. We aimed to analyze lymphocyte DNA from 198 subjects to evaluate the MTHFR 1298A>C polymorphism and folate status affecting genomic DNA methylation as a possible mechanism underlying the relationship between MTHFR polymorphisms and cancer susceptibility. Carriers of the 1298AA wild-type genotype showed lower genomic DNA methylation compared with 1298AC or 1298CC genotypes [3.72 versus 8.59 or 6.79 ng 5-methyl-2'-deoxycytidine (5-mCyt)/microg DNA, P < 0.0001 and P = 0.007, respectively]. When DNA methylation was evaluated according to plasma folate status, only 1298AA with low folate levels revealed diminished DNA methylation (P < 0.0001). Moreover, when the two MTHFR polymorphisms were concomitantly evaluated at the low folate status, DNA methylation was reduced only in 1298AA/677TT compared with 1298AA/677CC (3.11 versus 7.29 ng 5-mCyt/microg DNA, P = 0.001) and 1298CC/677CC genotypes (3.11 versus 7.14 ng 5-mCyt/microg DNA, P = 0.004). However, the high prevalence of 677TT mutants within the 1298AA group (79%) and the similar biochemical features of 1298AA/677CC and 1298CC/677CC combined genotypes suggest that the gene-nutrient interaction affecting DNA methylation in 1298AA is mainly due to the coexistence of the 677TT genotype and that the 1298A>C polymorphism may convey its protective effect not through this interaction but through another pathway in one-carbon metabolism. Further mechanistic studies are warranted to investigate how single polymorphisms as well as MTHFR combined genotypes exert their effect on cancer susceptibility.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Computers
  • DNA / genetics
  • Epidemiologic Studies
  • Folic Acid / blood*
  • Genotype
  • Homocysteine / blood
  • Humans
  • Italy
  • Lymphocytes / metabolism*
  • Methylation
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics*
  • Methylenetetrahydrofolate Reductase (NADPH2) / physiology
  • Polymorphism, Genetic*

Substances

  • Homocysteine
  • DNA
  • Folic Acid
  • Methylenetetrahydrofolate Reductase (NADPH2)