Cellular electrophysiological effect of terikalant in the dog heart

Eur J Pharmacol. 2005 Mar 14;510(3):161-6. doi: 10.1016/j.ejphar.2004.12.040.

Abstract

The cellular mechanism of action of terikalant, an investigational antiarrhythmic agent known to block the inward rectifier and other potassium currents, has not yet been fully clarified. The aim of the present study was therefore to analyse the in vitro electrophysiological effects of terikalant in canine isolated ventricular muscle and Purkinje fibers by applying the standard microelectrode technique. The effects of terikalant on the duration of action potential at a stimulation cycle length of 1000 ms and on the maximum upstroke velocity of the action potential in right ventricular papillary muscle were examined at 1, 2.5, 10, and 20 microM concentrations. Terikalant significantly prolonged the action potential duration measured both at 50% and 90% of repolarization in concentration-dependent manner. The maximum upstroke velocity of the action potential was unaffected at 1 and 2.5 microM concentrations. However, this parameter was significantly reduced at 10 and 20 microM concentrations of terikalant. In Purkinje fibers terikalant (2.5 microM) also produced a marked action potential lengthening effect. Frequency dependence (cycle length of 300-5000 ms) of the action potential lengthening effect of terikalant was studied at a concentration of 2.5 microM. Prolongation of the duration of action potential occurred in a reverse frequency-dependent manner both in papillary muscle and Purkinje fibers, with a more pronounced frequency-dependence observed in Purkinje fibers. The onset kinetics of the terikalant (10 microM) induced block of the maximum upstroke velocity of the action potential was rapid (0.6+/-0.1 beat(-1), n=6) like that of Class I/B antiarrhythmics, and the offset (recovery) kinetics of the drug (2956+/-696 ms, n=6) best resembled that of Class I/A antiarrhythmic drugs. It was concluded that terikalant, unlike pure Class III antiarrhythmic drugs, has combined mode of action by lengthening repolarization and blocking the inward sodium current in a use-dependent manner.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Animals
  • Anti-Arrhythmia Agents / pharmacology*
  • Chromans / pharmacology*
  • Dogs
  • Electrophysiology
  • Female
  • Heart / drug effects*
  • Heart / physiology*
  • In Vitro Techniques
  • Kinetics
  • Male
  • Papillary Muscles / drug effects
  • Papillary Muscles / physiology
  • Piperidines / pharmacology*
  • Purkinje Fibers / drug effects
  • Purkinje Fibers / physiology

Substances

  • Anti-Arrhythmia Agents
  • Chromans
  • Piperidines
  • terikalant