Molecular studies have shown that CD1 proteins present self and foreign lipid Ags to T cells, but the possible roles of CD1 in human autoimmune diseases in vivo are not known, especially for the group 1 CD1 isoforms (CD1a, CD1b, and CD1c). To investigate the hypothesis that CD1-restricted T cells might be activated and home to target tissues involved in Hashimoto's thyroiditis and Graves' disease, we performed ex vivo analysis of lymphocytes from peripheral blood and autoinflammatory lesions of thyroid tissue. Immunofluorescence analysis identified two types of CD1-expressing APCs in inflamed thyroid tissues. CD1a, CD1b, and CD1c were expressed on CD83+ dendritic cells, and CD1c was expressed on an abundant population of CD20+ IgD+ CD23- CD38- B cells that selectively localized to the mantle zone of lymphoid follicles within the thyroid gland. CD1c-restricted, glycolipid-specific T cells could not be detected in the peripheral blood, but were present in polyclonal lymphocyte populations isolated from affected thyroid glands. In addition, polyclonal thyroid-derived lymphocytes and short-term T cell lines were found to recognize and lyse targets in a CD1a- or CD1c-dependent manner. The targeting of CD1-restricted T cells and large numbers of CD1-expressing APCs to the thyroid gland during the early stages of autoimmune thyroiditis suggests a possible effector function of CD1-restricted T cells in tissue destruction and point to a new model of organ-specific autoimmune disease involving lipid Ag presentation.