Inhibition of oligomeric amyloid beta (Abeta) peptide or fibril formation has emerged as a major therapeutic target for developing new drugs for Alzheimer's disease. We focused on developing inhibitors by synthesizing hybrid molecules of ferulic acid and styryl benzene, which has been known as a fibril binder. Initially, cell-based assay was carried out to evaluate the effective compound. A selected effector, 1, alleviated the Abeta-induced neuronal toxicity in differentiated SH-SY5Y human neuroblastoma cells. The effector could also inhibit Abeta fibril formation, monitored by thioflavin T fluorescence intensity assay and transmitted electron microscopic images. A strong binding affinity of 1 to non-fibrous monomer-like Abeta, which was immobilized to a surface chip, was measured using a surface plasmon resonance technique. The data suggest that the effector shifts the equilibrium of multimeric Abeta, inhibiting the pathogenic oligomer or fibril formation.