In recent years metallothionein (MT) biology has moved from investigation of its ability to protect against environmental heavy metals to a wider appreciation of its role in responding to cellular stress, whether as a consequence of normal function, or following injury and disease. This is exemplified by recent investigation of MT in the mammalian brain where plausible roles for MT action have been described, including zinc metabolism, free radical scavenging, and protection and regeneration following neurological injury. Along with other laboratories we have used several models of central nervous system (CNS) injury to investigate possible parallels between injury-dependent changes in MT expression and those observed in the ageing and/or degenerating brain. Therefore, this brief review aims to summarise existing information on MT expression during CNS ageing, and to examine the possible involvement of this protein in the course of human neurodegenerative disease, as exemplified by Alzheimer's disease.