CPREzy: an evaluation during simulated cardiac arrest on a hospital bed

Resuscitation. 2005 Jan;64(1):103-8. doi: 10.1016/j.resuscitation.2004.08.011.

Abstract

CPREzy is a new adjunct designed to improve the application of manual external chest compressions (ECC) during cardiopulmonary resuscitation (CPR). The aim of this study was to determine the effect of using the CPREzy device compared to standard CPR during the simulated resuscitation of a patient on a hospital bed. Twenty medical student volunteers were randomised using a cross over trial design to perform 3 min of continuous ECC using CPREzy and standard CPR. There was a significant improvement in ECC depth with CPREzy compared to standard CPR 42.9 (4.4) mm versus 34.2 (7.6): mm, P = 0.001; 95% CI d.f. 4.4-12.9 mm. This translated to a reduction in the percentage of shallow compressions (<38 mm) with CPREzy 16 (23)% compared to standard CPR 59 (44)%, P = 0.003. There was a small increase in the percentage of compression regarded excessive (>51 mm): CPREzy 6.5 (19)% versus standard CPR 0 (0.1)%. P = 0.012). There was no difference in compression rate or duty cycle between techniques. Equal numbers of participants (40% in each group) performed one of more incorrectly placed chest compression. However the total number of incorrect compressions was higher for the CPREzy group (26% versus 3.9% standard CPR, P < 0.001). This was due to a higher number of low compressions (26% of total compressions for CPREzy versus 1% for standard CPR, P < 0.001). In conclusion, CPREzy was associated with significant improvements in ECC performance. Further animal and clinical studies are required to validate this finding in vivo and to see if it translates to an improvement in outcome in human victims of cardiac arrest.

Publication types

  • Clinical Trial
  • Comparative Study
  • Randomized Controlled Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cardiopulmonary Resuscitation / instrumentation*
  • Cardiopulmonary Resuscitation / methods*
  • Female
  • Heart Arrest / therapy*
  • Hospitalization
  • Humans
  • Male
  • Patient Simulation
  • Pilot Projects
  • Treatment Outcome