2,4,6-trichlorophenol (2,4,6-TCP) is a hazardous pollutant that is efficiently degraded by some aerobic soil bacterial isolates under laboratory conditions. The degradation of this pollutant in soils and its effect on the soil microbial community are poorly understood. We report here the ability of a previously unexposed forest soil microbiota to degrade high levels of 2,4,6-TCP and describe the changes in the soil microbial community found by terminal restriction fragment length polymorphism (T-RFLP) analysis. After 30 days of incubation, about 50% degradation of this pollutant was observed in soils amended with 50 to 5,000 ppm of 2,4,6-TCP. The T-RFLP analysis showed that the soil bacterial community was essentially unchanged after exposure to up to 500 ppm of 2,4,6-TCP. However, a significant decrease in richness was found with 2,000 and 5,000 ppm of 2,4,6-TCP, even though the removal of this pollutant remained high. The introduction of Ralstonia eutropha JMP134 or R. eutropha MS1, two efficient 2,4,6-TCP degraders, to this soil did not improve degradation of this pollutant, supporting the significant bioremediation potential of this previously unexposed, endogenous forest soil microbial community.