Aurora-A abrogation of p53 DNA binding and transactivation activity by phosphorylation of serine 215

J Biol Chem. 2004 Dec 10;279(50):52175-82. doi: 10.1074/jbc.M406802200. Epub 2004 Oct 6.

Abstract

The tumor suppressor p53 is important in the decision to either arrest cell cycle progression or induce apoptosis in response to a variety of stimuli. p53 posttranslational modifications and association with other proteins have been implicated in the regulation of its stability and transactivation activity. Here we show that p53 is phosphorylated by the mitotic kinase Aurora-A at serine 215. Unlike most identified phosphorylation sites of p53 that positively associate with p53 function (Brooks, C. L., and Gu, W. (2003) Curr. Opin. Cell Biol. 15, 164-171), the phosphorylation of p53 by Aurora-A at Ser-215 abrogates p53 DNA binding and transactivation activity. Downstream target genes of p53, such as p21Cip/WAF1 and PTEN, were inhibited by Aurora-A in a Ser-215 phosphorylation-dependent manner (i.e. phosphomimic p53-S215D lost and non-phosphorylatable p53-S215A retained normal p53 function). As a result, Aurora-A overrides the apoptosis and cell cycle arrest induced by cisplatin and gamma-irradiation, respectively. However, the effect of Aurora-A on p53 DNA binding and transactivation activity was not affected by phosphorylation of Ser-315, a recently identified Aurora-A phosphorylation site of p53 (Katayama, H., Sasai, K., Kawai, H., Yuan, Z. M., Bondaruk, J., Suzuki, F., Fujii, S., Arlinghaus, R. B., Czerniak, B. A., and Sen, S. (2004) Nat. Genet. 36, 55-62). Our data indicate that phosphorylation of p53 at Ser-215 by Aurora-A is a major mechanism to inactivate p53 and can provide a molecular insight for Aurora-A function.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Aurora Kinases
  • Cell Line
  • DNA / genetics
  • DNA / metabolism*
  • Genes, p53
  • Humans
  • In Vitro Techniques
  • Molecular Sequence Data
  • Phosphorylation
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • Protein Structure, Tertiary
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Serine / chemistry
  • Transcriptional Activation
  • Tumor Suppressor Protein p53 / chemistry*
  • Tumor Suppressor Protein p53 / genetics
  • Tumor Suppressor Protein p53 / metabolism*

Substances

  • Recombinant Proteins
  • Tumor Suppressor Protein p53
  • Serine
  • DNA
  • Aurora Kinases
  • Protein Serine-Threonine Kinases