Cytochrome P450s (CYP) and their arachidonic acid (AA) metabolites have important roles in regulating vascular tone, but their function and specific pathways involved in modulating myocardial ischemia-reperfusion injury have not been clearly established. Thus, we characterized the effects of several selective CYPomega-hydroxylase inhibitors and a CYPomega-hydroxylase metabolite of AA, 20-hydroxyeicosatetraenoic acid (20-HETE), on the extent of ischemia-reperfusion injury in canine hearts. During 60 minutes of ischemia and particularly after 3 hours of reperfusion, 20-HETE was produced at high concentrations. A nonspecific CYP inhibitor, miconazole, and 2 specific CYPomega-hydroxylase inhibitors, 17-octadecanoic acid (17-ODYA) and N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), markedly inhibited 20-HETE production during ischemia-reperfusion and produced a profound reduction in myocardial infarct size (expressed as a percent of the area at risk) (19.6+/-1.7% [control], 8.4+/-2.5% [0.96 mg/kg miconazole], 5.9+/-2.2% [0.28 mg/kg 17-ODYA], and 10.8+/-1.8% [0.40 mg/kg DDMS], P<0.05, respectively). Conversely, exogenous 20-HETE administration significantly increased infarct size (26.9+/-1.9%, P<0.05). Several CYPomega-hydroxylase isoforms, which are known to produce 20-HETE such as CYP4A1, CYP4A2, and CYP4F, were demonstrated to be present in canine heart tissue and their activity was markedly inhibited by incubation with 17-ODYA. These results indicate an important endogenous role for CYPomega-hydroxylases and in particular their product, 20-HETE, in exacerbating myocardial injury in canine myocardium. The full text of this article is available online at http://circres.ahajournals.org.