Cyclooxygenase- and lipoxygenase-dependent relaxation to arachidonic acid in rabbit small mesenteric arteries

Am J Physiol Heart Circ Physiol. 2005 Jan;288(1):H302-9. doi: 10.1152/ajpheart.00661.2004. Epub 2004 Sep 23.

Abstract

We recently reported that the lipoxygenase product 11,12,15-trihydroxyeicosatrienoic acid (THETA) mediates arachidonic acid (AA)-induced relaxation in the rabbit aorta. This study was designed to determine whether this lipoxygenase metabolite is involved in relaxation responses to AA in rabbit small mesenteric arteries. AA (10(-9)-10(-4) M) produced potent relaxations in isolated phenylephrine-preconstricted arteries, with a maximal relaxation of 99 +/- 0.5% and EC(50) of 50 nM. The cyclooxygenase (COX) inhibitors indomethacin (10 microM), NS-398 (10 microM, selective for COX-2), and SC-560 (100 nM, selective for COX-1) caused a marked rightward shift of concentration responses to AA. With the use of immunohistochemical analysis, both COX-1 and COX-2 were detected in endothelium and smooth muscle of small mesenteric arteries. Indomethacin-resistant relaxations were further reduced by the lipoxygenase inhibitors cinnamyl-3,4-dihydroxy-cyanocinnamate (CDC; 1 muM), nordihydroguaiaretic acid (NDGA; 1 microM), and ebselen (1 microM). HPLC analysis showed that [(14)C]AA was metabolized by mesenteric arteries to PGI(2), PGE(2), THETAs, hydroxyepoxyeicosatrienoic acids (HEETAs), and 15-hydroxyeicosatetraenoic acid (15-HETE). The production of PGI(2) and PGE(2) was blocked by indomethacin, and the production of THETAs, HEETAs, and 15-HETE was inhibited by CDC and NDGA. Column fractions corresponding to THETAs were further purified, analyzed by gas chromatography/mass spectrometry, and identified as 11,12,15- and 11,14,15-THETA. PGI(2), PGE(2), and purified THETA fractions relaxed mesenteric arteries precontracted with phenylephrine. The AA- and THETA-induced relaxations were blocked by high K(+) (60 mM). These findings provide functional and biochemical evidence that AA-induced relaxation in rabbit small mesenteric arteries is mediated through both COX and lipoxygenase pathways.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Arachidonic Acid / metabolism
  • Arachidonic Acid / pharmacology*
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • In Vitro Techniques
  • Lipoxygenase / physiology*
  • Male
  • Mesenteric Arteries / drug effects
  • Mesenteric Arteries / enzymology
  • Mesenteric Arteries / physiology*
  • Prostaglandin-Endoperoxide Synthases / physiology*
  • Rabbits
  • Vasodilation / drug effects*
  • Vasodilation / physiology*

Substances

  • Arachidonic Acid
  • Lipoxygenase
  • Cyclooxygenase 1
  • Cyclooxygenase 2
  • Prostaglandin-Endoperoxide Synthases