Therapy-related acute myeloid leukemia (t-AML) characterized by the t(9;11)(p22;q23) translocation is one of the most frequent secondary malignancies. The timing of the initiation of translocation and of development of the malignant t(9;11) clone during chemotherapy is presently unknown. In the present study, we backtracked bone marrow samples from three children during treatment for acute lymphoblastic leukemia (ALL). Two patients developed a t(9;11)-positive t-AML 19 and 30 months after therapy start, whereas the third patient, diagnosed with a rare t(9;11)-positive ALL, suffered from an ALL relapse 23 months after initial diagnosis. The genomic MLL-MLLT3 (MLL-AF9) fusion site was amplified by a multiplex, nested long-range PCR and used as a clonal marker for quantification of the MLL-MLLT3-positive cells during chemotherapy. The t(9;11)-positive clone was detectable 13 and 18 months after therapy start in both t-AML cases, which was 6-12 months before clinical diagnosis of the secondary malignancy. In the t(9;11)-positive ALL patient, the identical leukemic clone reoccurred during maintenance therapy after a short molecular remission, 8 months before clinically overt ALL relapse. The time course and characteristics of the genomic breakpoints in the present t-AML cases support the hypothesis of translocation formation as a result of defective breakage repair after topoisomerase II cleavage.
Copyright 2004 Wiley-Liss, Inc.