Background and aims: Allowing for dispersal limitation, a species' geographic distribution should reflect its environmental requirements. Comparisons among closely related species should reveal adaptive differentiation in species characteristics that are consistent with their differences in geographic distribution. This expectation was tested by comparing characteristics of seedlings of spruce species in relation to environmental factors representative of their current natural ranges.
Methods: Seedlings were grown from a total of 34 populations representing eight North American spruce (Picea) species in a controlled environment chamber for 140 d. Traits related to the potential of seedling establishment, including tolerance to stress events (high temperature, desiccation) were evaluated. Correlations were sought between these characteristics and modal values of latitude, aridity and continentality in the geographic range of each species.
Key results: Many seedling traits changed significantly in response to stress events, but only the response of chlorophyll concentration differed significantly among species. Components of seedling growth were good correlates of species distribution. Seedling relative growth rate (RGR) and specific leaf area (SLA) were positively correlated with latitude, and leaf weight ratio (LWR) negatively correlated with aridity. Seed mass was negatively correlated with latitude.
Conclusions: Relationships found between seedling traits and geographical variation in environmental conditions suggest that factors such as temperature regime, water availability and perhaps litter depth affect species range in North American spruces. Seedling characteristics appear to be elements in a reasonably distinct environmental niche for each spruce species at the continental scale.