It has been suggested that the amount of maternal testosterone allocated into the eggs might be implicated in the process of sex determination. However, recent findings on the effect that female social rank has on the level of egg testosterone suggest that reported associations between male-biased sex ratios and yolk testosterone may represent an indirect hormonal effect mediated by the interdependence among maternal hormones, female social rank, and sex ratio. Here, we report the results of a field experiment in which we manipulated the circulating levels of testosterone in female spotless starlings (Sturnus unicolor) before egg formation. Focal females were controlled in subsequent years to explore possible delayed effects of hormone manipulation on primary sex ratio and social status that could persist because of permanent hormonal change or through hormone-dominance interactions. The results indicate that testosterone-implanted females (T-females) produced significantly more sons than control females (C-females) in the year in which they were manipulated. These differences in offspring sex ratio between T- and C-females persisted in the next 3 years, although no additional hormone treatments were given. These results were not mediated by an eventual effect of testosterone treatment on the quality of the females' mates. A similar proportion of T- and C-females acquired a nest box and bred either in the manipulation year or in Year 1 after manipulation, but T-females tended to be more successful in acquiring a nest box than C-females in Years 2 and 3 after manipulation. These results suggest that added testosterone had a direct role on the acquisition and maintenance of high social rank. Delayed effects of testosterone on primary sex ratio might have been caused by altered endogenous production of T-females. Alternatively, the maintenance of sex ratio differences between T- and C-females long after having being implanted might be attributed to the positive effect that enhanced social rank of T-females has on their circulating testosterone levels.