Effects of hypercapnic hypoxia on the clearance of Vibrio campbellii in the Atlantic blue crab, Callinectes sapidus Rathbun

Biol Bull. 2004 Jun;206(3):188-96. doi: 10.2307/1543642.

Abstract

Callinectes sapidus, the Atlantic blue crab, encounters hypoxia, hypercapnia (elevated CO(2)), and bacterial pathogens in its natural environment. We tested the hypothesis that acute exposure to hypercapnic hypoxia (HH) alters the crab's ability to clear a pathogenic bacterium, Vibrio campbellii 90-69B3, from the hemolymph. Adult male crabs were held in normoxia (well-aerated seawater) or HH (seawater with PO(2) = 4 kPa; PCO(2) = 1.8 kPa; and pH = 6.7-7.1) and were injected with 2.5 x 10(4) Vibrio g(-1) body weight. The animals were held in normoxia or in HH for 45, 75, or 210-240 min before being injected with Vibrio, and were maintained in their respective treatment conditions for the 120-min duration of the experiment. Vibrio colony-forming units (CFU) ml(-1) hemolymph were quantified before injection, and at 10, 20, and 40 min afterward. Total hemocytes (THC) ml(-1) of hemolymph were counted 24 h before (-24 h), and at 10 and 120 min after injection. Sham injections of saline produced no change in the bacterial or hemocyte counts in any treatment group. Among the groups that received bacterial injections, Vibrio was almost completely cleared within 1 h, but at 10-min postinjection, Vibrio CFU ml(-1) hemolymph was significantly higher in animals held in HH for 75 and 210-240 min than in those held in normoxia. Within 10 min after crabs were injected with bacteria, THC ml(-1) significantly decreased in control and HH45 treatments, but not in the HH75 and HH210-240 treatments. By 120 min after injection of bacteria, hemocyte counts decreased in all but the HH45 group. These data demonstrate that HH significantly impairs the ability of blue crabs to clear Vibrio from the hemolymph. These results also suggest that HH alters the normal role of circulating hemocytes in the removal of an invading pathogen.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Analysis of Variance
  • Animals
  • Blood Cell Count
  • Brachyura / immunology*
  • Brachyura / microbiology*
  • Brachyura / physiology
  • Hemolymph / microbiology
  • Hypercapnia / physiopathology*
  • Hypoxia / physiopathology*
  • Immunity, Innate / immunology*
  • Seawater
  • South Carolina
  • Time Factors
  • Vibrio*