The type 1 alpha regulatory subunit (R1alpha) of cAMP-dependent protein kinase A (PKA) (PRKAR1A) is an important regulator of the serine-threonine kinase activity catalyzed by the PKA holoenzyme. Carney complex (CNC) describes the association 'of spotty skin pigmentation, myxomas, and endocrine overactivity'; CNC is in essence the latest form of multiple endocrine neoplasia to be described and affects the pituitary, thyroid, adrenal and gonadal glands. Primary pigmented nodular adrenocortical disease (PPNAD), a micronodular form of bilateral adrenal hyperplasia that causes a unique, inherited form of Cushing syndrome, is also the most common endocrine manifestation of CNC. CNC and PPNAD are genetically heterogeneous but one of the responsible genes is PRKAR1A, at least for those families that map to 17q22-24 (the chromosomal region that harbors PRKAR1A). CNC and/or PPNAD are the first human diseases to be caused by mutations in one of the subunits of the PKA holoenzyme. Despite the extensive literature on R1alpha and PKA, little is known about their potential involvement in cell cycle regulation, growth and/or proliferation. The presence of inactivating germline mutations and the loss of its wild-type allele in CNC lesions indicated that PRKAR1A could function as a tumor-suppressor gene in these tissues. However, there are conflicting data in the literature about PRKAR1A's role in human neoplasms, cancer cell lines and animal models. In this report, we review briefly the genetics of CNC and focus on the involvement of PRKAR1A in human tumorigenesis in an effort to reconcile the often diametrically opposite reports on R1alpha.
Copyright 2004 Society for Endocrinology