Spliceosome-mediated RNA trans-splicing (SMaRT) provides an effective means to reprogram mRNAs and the proteins they encode. SMaRT technology has a broad range of applications, including RNA repair and molecular imaging, each governed by the nature of the sequences delivered by the pre-trans-splicing molecule. Here, we show the ability of SMaRT to optically image the expression of an exogenous gene at the level of pre-mRNA splicing in cells and living animals. Because of the modular design of pre-trans-splicing molecules, there is great potential to employ SMaRT to image the expression of any arbitrary gene of interest in living subjects. In this report, we describe a model system that demonstrates the feasibility of imaging gene expression by transsplicing in small animals. This represents a previously undescribed approach to molecular imaging of mRNA levels in living subjects.